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Experiments by Maerker et al.1 in 1998 showed that the conversion of the dilithium adduct of diphenyl
acetylene, (Z)-2, to its trans derivative (E)-5 occurred at a rate that was independent of time, leading them to
propose a model for this reaction. We present a detailed numerical example to illustrate that this model
predicts a reaction that proceeds nearly linearly with time almost from the start to the end of the conversion.
We then introduce an enhanced stationary state approximation (ESSA), with a network representation, to get
accurate analytical solutions for the time-dependent reagent concentrations predicted by this model, along
with estimates of the accuracy of the solutions. Unlike the usual stationary state approximation (SSA), this
ESSA allows for analytical solution during the initial transient induction period as well as the main phase of
the reaction. Examinations of the network and of the analytical solutions provide an explanation for the
mechanism by which this model maintains nearly zero-order kinetics throughout the reaction. This mechanism
is more general than the particular reagents described here; it requires only the reaction scheme which satisfies
certain inequalities. The analytical solutions show also that the conversion rate is determined mainly by the
total concentration of monolithiated compounds present (a total which remains constant throughout the
reactions), and the rate constant for cis-to-trans conversion of these monolithiated compounds.

1. Introduction

Note: General conventions, specific notation, and abbrevia-
tions used in this paper are listed in Appendix A. Conversion
of the cis dilithium adduct of diphenyl acetylene (Z)-2 into its
trans derivative (E)-2 (also referred to as the 253-278 conver-
sion) was studied experimentally by Maerker et al.1 They found
that the conversion proceeded linearly with time, indicating a
somewhat surprising zero-order chemical kinetics. They sug-
gested a reaction model, and used a stationary state approxima-
tion (SSA) to estimate the reaction rate in terms of the
parameters of the model. However, their approximations were
somewhat oversimplified, leading to some inconsistent and
incomplete results. The aims of the present study were to better
explain the mechanism by which the model reaction maintains
zero-order kinetics throughout the conversion and to find
accurate analytical solutions to the model.

We used the Maerker1-Kemmer2 reaction model, but used
a newenhancedversion (enhanced stationary state approxima-
tion, ESSA) of the usual SSA to eliminate inconsistencies of
the SSA and to obtain accurate analytical results for the time
dependence of all reagent concentrations throughout the full
conversion. The ESSA also provides self-estimates of its own
accuracy. As a further check, we did numerical integrations of

the differential equations for representative values of the model
parameters. One such integration is provided as a detailed
example to illustrate the remarkable accuracy of the analytical
approximation. Although the numerical solutions are more
accurate, the analytical solutions have very important advan-
tages: they show directly the effects of varying parameters
without requiring repeated numerical integrations, and they show
which results are applicable more generally, even when
parameters are changed. A network representation and the
analytical results provide insight into the mechanism by which
this model succeeds so well to maintain nearly zero-order
kinetics throughout the reaction. We show that the rate of (Z)-2
to (E)-5 conversion is determined essentially by the total initial
concentration of both stilbenes [cis stilbene, (Z)-3, plus trans
stilbene, (E)-3] multiplied by the rate constant for the cis-to-
trans conversion of stilbene. We show also that the zero-order
nature of the reaction (called reaction scheme I) is not limited
to a particular choice of reagents but depends only on certain
inequalities being satisfied.

2. Reactions

Conversion of the cis dilithium adduct of diphenyl acetylene
[tolane, (Z)-2], (herein denoted z1 for simplicity) into its trans
derivative (E)-5 (herein denoted z4) was reported in a recent
note by Maerker et al.1 The reaction was performed in diethyl
ether solution at ambient temperature. Experimentally, the
reaction kinetics was found to be zero-order in the concentration
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of z1. The formation rate of z4 appeared to be constant, despite
the decreasing concentration of z1 (see Figure 2 of Maerker).1

The isosbestic points in the optical absorption spectra (see
Figure 1 of Maerker)1 showed that there were only the two major
species present. However, it was further deduced that two
intermediates both present in minute concentration (trans stilbene
(E)-3 and cis stilbene (Z)-3, the monolithium adducts of tolane,
herein denoted z2 and z3 respectively), did participate in the
reaction; their concentrations being sufficiently small to not
affect the optical absorption spectra. Detailed study of the
reaction led them1,2 to the following mechanism for the overall
process (shown below with our new notation as reaction scheme
I). They assumed a simple bimolecular reaction for Ia and
monomolecular kinetics for Ib.

The rapidity of the conversion of z3 back to z2 suggested that
k2 . k-2 . (Note: by “rapid conversion” in this scheme, we
mean that the monomolecular reaction z3 f z2 is a rapid one.
The actual concentration of z3 remains nearly constant because
of an equally rapid generation of z3 from z1 and z2 in Ia)

The overall reaction is determined by the following four
differential equations.

In these equations,j23 and j14, which appear as important
elements in our network representation of section 5, are also
introduced here to simplify notation in the differential equations.

The reverse reactions, governed by the small rate constants
k-1 , k1 andk-2 , k2, were thought to be negligible during
the main phase of the process (they were not included in
Maerker’s reaction scheme shown on p 2138 of ref 1), making
the reaction nearly irreversible, so

3. Traditional Stationary State Approximation

Many textbooks4 discussing chemical kinetics teach that a
functional expression helpful in deriving rate laws of some
complex reactions can be obtained from the so-called stationary
state approximation or steady state approximation (SSA). SSA
is usually used when the concentration of some intermediate
species x is always small, so that its time derivative can be
neglected relative to the time derivatives of concentration of
the main species y. In other words, if [x], [y], it often turns
out that also|d[x]/dt| , |d[y]/dt|, at least for some large fraction
of the reaction time.

For example, consider the initiation of radical polymerizations
involving an initiator (In), a monomer (M), a small concentration

of radical (R), and a polymer (P). The process can be described
by reaction scheme II.

It follows that dR/dt ) 2k1 In - k-1 R2 - k2 R M + k-2 P.
In the SSA, after some initial induction period, dR/dt ≈ 0.

If, in addition, k-2 P , k2 RM, then

This is a quadratic equation that determines R from In, M, and
the rate constantsk1, k-1, k2.

4. Problems of the SSA Applied to Reaction Scheme I

The SSA does not apply so obviously for more complicated
cases, such as reaction scheme I. Maerker1 neglected the small
reverse reactionsk-1z3z4 and k-2z2, and made the plausible
assumption that the concentration of z2 is stationary, leading
them to the relations

so that the conversion rate

was claimed to be, from eq 8,

formally independent of z1.
Reviewing the situation shows that this formal independence

was not sufficient to prove real independence, since the
dependence of z3 on z1 was not known. In order for the reaction
kinetics to be zero order, eq 9 required the dominant termk1z1z2

to be nearly constant, implying that the concentration z2

increases in inverse proportion to z1, as z1 is depleted. This
requirement seems to conflict with the SSA assumption of eq
7, that dz2/dt ) 0. Furthermore, the SSA does not treat the initial
transient induction period.

In section 7, we develop an extended SSA (ESSA) to remove
these problems. We will find that neither eq 5a nor eq 8 nor eq
9 is accurate. However, the errors fortuitously seem to cancel
out so that eq 10 is actually quite accurate during most of the
conversion, even though 5a, 8, and 9 are inaccurate.

5. Network Representation

More insight into the general problem can be obtained by
representing the system of equations as a network. Figure 1
shows an electrical network representation.

Fixed capacitors labeled Ci, i ) 1, 2, 3, 4, represent the
chemicals. All capacitors have the same value. Without loss of
generality, for the sake of convenience of the discussion, we
choose all Ci to be one Farad. Then, becauseQ ) CV, their
chargesQi (in Coulombs) are equal numerically to their voltages
Vi (in volts). ChargesQi (or Vi) and currentsIi represent the
concentrations and their time derivatives, respectively. Voltage
controlled current sources (VCCS), labeledj14 andj23, represent
the driving terms in the differential equations. The network gives
an easy visual realization of the relations among the currents,
and the fact that there are only two independent current sources.

z1 + z2 {\}
k1

k-1
z3 + z4 (k1 >>> k-1) (Ia)

followed by the rapid conversion of z3 back to z2

z3 {\}
k2

k-2
z2 (k2 . k-2) (Ib)

dz1/dt ) -(k1z1z2 - k-1z3z4) ) -j14 (1)

dz2/dt ) -(k1z1z2 - k-1z3z4) - (k-2z2 - k2z3) ) -j14- j23

(2)

dz3/dt ) (k1z1z2 - k-1z3z4) + (k-2z2 - k2z3) ) j14+ j23 (3)

dz4/dt ) (k1z1z2 - k-1z3z4) ) j14 (4)

k-1z3z4 , k1z1z2 (5a)

k-2z2 , k2z3 (5b)

In {\}
k1

k-1
2R R+ M {\}

k2

k-2
P (II)

0 ≈ k-1R
2 + k2RM - 2k1In (6)

0 ) dz2/dt ) k2z3 - k1z1z2 (7)

z2 ) k2z3/k1z1 (8)

dz4/dt ) k1z1z2 (9)

dz4/dt ) k2z3 (10)
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One sees also quite easily the effects of the ESSA; it allows
us to temporarily disconnect some branches, which have nearly
zero current. In section 7, it will be seen that the middle branch
(with VCCS j23) can be removed for the initial transient phase
of the reaction (t < t1 in section 7), whereas the right-hand
branch (with C2 and C3) can be removed during the main phase
of the reaction (t1 < t < t2 in section 7). It also makes clear
that combinationsj23 and j14 of time derivatives in the kinetic
equations (currents in the network) are important variables,
leading us to the insight for the approximations needed to
develop the solutions.

6. Numerical Computer Solutions
Methods. It is helpful to study results of a numerical

integration of the differential equations for a particular example.
This was done using a Turbo-Pascal program based on Bulirsch5

and repeated using PSpice and the network of Figure 1 to
confirm the results.

Example.The model parameters and computed results for a
typical numerical example are presented in Table 1, and shown
graphically in Figure 2.

The initial concentrations of z2 (Z20 ) 2) and of z3 (Z30 )
0.2) are chosen in the ratio Z20/Z30 ) k2/k-2 ) 10, which
represents an experimental situation for which z2 and z3 are in
equilibrium with each other before being added to z1. The final
concentration is thus in the same ratio, making z2 and z3 act
essentially as catalysts, in the sense that neither one is
permanently used up in the reaction.

The initial concentration z1 is Z10 ) 100 (for approximately
100% of this major ingredient), and z4 is Z40 ) 0.001
representing a trace amount that might be present in real
experiments.

A striking and significant result is the dramatic decrease of
z2 in the initial stage of the process. In the time needed to convert
about 2% of z1 to z4, the concentration z2 is reduced more than
100-fold from 2.0 to 0.012, while z3 increases accordingly more
than 10-fold from 0.2 to 2.188. The greatly enhanced concentra-
tion z3, formed during the initial transient, is now a source for
continuous production of extra z2 needed to maintain the
production of z4 during the main reaction phase.

Note that the reaction is remarkably very close to zero-order;
the reaction rate remains 21( 10% as the conversion of z1 to

z4 proceeds from 2% to 90%. This is despite the fact that the
product z1z2 actually increases more than 2-fold from a
minimum of 1.1 to a maximum of 2.7 during this same time
interval, further contradicting the SSA result of eq 9. Beyond
90% conversion, the reaction slows down markedly as all of
the reagents approach their equilibrium concentrations.

We notice also that contrary to eq 5a, (k-1z3z4)/(k1z1z2) is
not negligible, being more than 50% for the second half of the
conversion. Thus, neither SSA eq 5a nor eq 8 nor eq 9 is
accurate. However, these errors (somewhat fortuitously) seem
to cancel, so that the final SSA result of eq 10 is quite accurate,
even though eqs 5a, 8, and 9, on which it was based, are not.

The Need for Analytical Solution. The numerical results
apply only to the particular numerical example. However,
variation of the parameters indicated that many features of the
results are rather general.

Analytic solutions are needed to provide additional under-
standing, and allow easier generalization and/or optimization
than does a numerical solution that has to be recomputed for
each new set of rate constants and initial conditions.

7. Analytical Extended Stationary State Approximation
(ESSA)

In Appendix B, we present detailed analytical solutions and
justification for the approximations used. In this section we
briefly summarize our methods and results from Appendix B.

Figure 1. Electrical network analogue of reaction scheme I. For
i ) 1, 2, 3, 4, capacitors Ci ) 1 Farad, chargesQi represent the
concentrations zi, voltages Vi ) Qi/Ci also representzi, currents
Ii ) dQi/dt represent dzi/dt, voltage controlled current sources
(VCCS): j14 ) k1Q1Q2 - k-1Q3Q4 representsj14 ) k1z1z2 - k-1z3z4;
j23 ) k-2Q2 - k2Q3 representsj23 ) k-2z2 - k2z3.

TABLE 1: Concentrations of All Reagents vs Time for a
Numerical Example of Reaction Scheme Ia

k1 k-1 k2 k-2

20.000 0.200 10.000 1.000

Z10 Z20 Z30 Z40

100.000 2.000 0.200 0.001

t z1 z2 z3 z4 dz4/dt k1z1z2

0.0000 100.000 2.000 0.200 0.001 4000.00 4000.00
0.0001 99.638 1.638 0.562 0.363 3264.10 3264.14
0.0002 99.342 1.343 0.857 0.659 2668.21 2668.33
0.0005 98.740 0.744 1.456 1.261 1468.88 1469.25
0.0010 98.271 0.284 1.916 1.730 557.52 558.18
0.0020 98.016 0.049 2.151 1.985 95.20 96.06
0.0025 97.982 0.026 2.174 2.019 50.07 50.95
0.0026 97.977 0.023 2.177 2.024 44.19 45.07
0.0027 97.973 0.021 2.179 2.028 40.26 41.15
0.0030 97.962 0.017 2.183 2.039 32.42 33.31
0.0035 97.948 0.014 2.186 2.053 26.53 27.43
0.0040 97.936 0.012 2.188 2.065 22.60 23.50
0.0050 97.913 0.012 2.188 2.088 22.59 23.50
0.0100 97.804 0.012 2.188 2.197 22.51 23.47
0.0200 97.585 0.012 2.188 2.416 22.36 23.42
0.0500 96.929 0.012 2.188 3.072 21.92 23.26
0.1000 95.837 0.012 2.188 4.164 21.18 23.00
0.2000 93.651 0.013 2.187 6.350 21.57 24.35
0.5000 87.102 0.016 2.184 12.899 22.24 27.87
1.0000 76.208 0.021 2.179 23.793 21.64 32.01
2.0000 54.538 0.038 2.162 45.463 21.79 41.45
3.0000 33.162 0.075 2.125 66.839 21.34 49.74
3.5000 22.716 0.116 2.084 77.285 20.49 52.70
3.9000 14.628 0.185 2.015 85.373 19.72 54.12
4.0000 12.675 0.213 1.987 87.326 19.29 54.00
4.2000 8.911 0.297 1.903 91.090 18.26 52.93
4.4800 4.261 0.552 1.648 95.740 15.49 47.04
4.6000 2.651 0.752 1.448 97.350 11.68 39.87
4.8000 0.949 1.262 0.938 99.052 5.37 23.95
5.0000 0.325 1.717 0.483 99.676 1.53 11.16

a Results were found by computer numerical integration and shown
here and also graphically in Figure 3. The corresponding conversion
rate dz4/dt is compared with the reaction ratek1z1z2. Also shown are
the parameters of this numerical example.
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Equations 11-14 in this section correspond to equations B4.1,
B4.2, B5.3, and B13.2, respectively, in Appendix B.

To understand the situation better, we analyze the problem
analytically, albeit approximately, using an extension of the SSA
that is more elaborate than the simple application of the SSA
used by Maerker.1 We find that extensions of the usual SSA
can be used to solve the differential equations analytically, with
remarkably high accuracy and very little effort. The analytical
solutions can also explain the reasons that eqs 5a, 8, and 9 are
not accurate, but still eq 10 is very accurate.

We use reaction scheme I, with differential eqs 1-4. We also
use rate constants and initial conditions that satisfy the following
general inequalities:

Other than the requirement of having to satisfy these inequalities,
the rate constants and initial conditions may be chosen freely.
Thus, the results of using the ESSA will apply more generally
than for just these particular reagents or for the numerical
example chosen.

The reaction time is divided into three intervals, with a
different analysis for each. Detailed analytical ESSA solutions
for all concentrations are in Table 2 (part A), with numerical
example results in Table 2 (part B). Figure 3 shows a graphic
representation of z4 to compare with numerical computer
integrations. Note that changes in the conditions above might
require that changes in the details of some approximations be
made in the ESSA.

ESSA Compared With the Usual SSA.The usual SSA
focuses on the smallest reagent concentrations and assumes that
because they remain small, their time derivatives can be

approximated as zero. The extended ESSA focuses on larger
concentrations that happen to have sufficiently small time
derivatives to be considered “stationary”. These larger nearly
stationary concentrations are treated as constants when comput-
ing the other concentrations. The predicted values of those other
concentrations are then used to recompute the changes in the
nearly stationary concentration and thus to find the time at which
this stage of approximation fails to be self-consistent, and at
which a new approximation is needed. Thus, as in our example,
the ESSA can deal with the initial induction period during which
the large concentration of the source reagent is nearly stationary,
as well as the main phase of the reaction during which only the
larger concentration intermediate (z3) of the two intermediates
(z2, z3) is stationary.

ESSA Interval 1 (0 e t e t1). This interval is characterized
by a nearly stationary z1.

For t near zero,|dz2/dt| ) |dz3/dt| ≈ |dz4/dt| ) |dz1/dt| ) j14

≈ k1z1z2. This condition differs from the usual SSA condition,
because here the rate of change of the small quantities is
approximately equal to the rate of change of the large quantities.
We note, however, that because z1 is the largest concentration,
the percentage changes in z1 are smallest. Thus, the largest
concentration, z1, may be considered to be nearly constant (z1

≈ Z10) on the right-hand side of eqs 1-4 when computing the
time derivatives.

In the network of Figure 1, we can neglectj23, and thus can
disconnect the central branch, leaving a much simpler network
to be analyzed.

Initially, the large concentration of the starting source material
z1 is far from equilibrium with the final product z4. The major
term in the rate equations isk1z1z2. It causes major (percentage)
changes in the small concentrations of the intermediates z2 and
z3, driving them far from equilibrium, with only minor (percent-
age) changes in the large concentration z1. Thus, during this

Figure 2. Concentrations of all reagents vs time for reaction scheme I and parameters of the numerical example. Results were found by computer
numerical integration and listed in Table 1.

k1 . k-1 (11) ) (B4.1)

k2 . k-2 (12) ) (B4.2)

Z10. Z20. Z30. Z40; C14. C23 (13) ) (B5.3)
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phase, we make use of the fact that the large concentration z1

is nearly stationary and that z4/z1 , 1.

In Appendix B, we obtain quite accurate results for this rapid
initial transient, as summarized in Table 2. This interval ends
when dz3/dt ) - dz2/dt decreases to zero, at a time we callt1.
At that time, z3 and z2 are then (momentarily) exactly stationary.
We estimate, quite accurately, the concentrations Z21 and Z31

(the values of z2 and z3 at timet ) t1) and use those to determine
Z11 and Z41 (the values of z1 and z4 at time t1). Even more

important, we determine the production rate (dz4/dt) at t1 when
we have an exact stationary state.

With somewhat less accuracy, we determine the value of the
time t1. The ESSA foundt1 ≈ 0.0026, whereas the computer
integrations foundt1 ≈ 0.0067. Although this is a very large %
error, the actual time difference 0.0041 is extremely small
compared with the overall time span of the reaction (t ≈ 5).
Because this does not affect any of the other estimates, we did
not find it necessary to improve the approximation to findt1
more accurately analytically in the ESSA.

ESSA Interval 2 (t1 < t < t2_p). This interval is characterized
by nearly stationary z3 ) Z31 ≈ C23 and |dz2/dt| ) |dz3/dt| ,
|dz4/dt| ) |dz1/dt|, so j23 ≈ - j14 . Thus, we can effectively
remove the right-hand branch in the network of Figure 1, again
leading to a much simpler network to be analyzed.

The changes in z2 and z3 are slow. However, z2 starts out
very small att1, so the percentage changes in z2 are fairly large.
On the other hand, z3 starts out much larger att1, so the
percentage changes in z3 are indeed small. Thus, it is z3, not z2,
that is nearly stationary in this time interval.

After t1, the concentration ratio z2/z3 , 1 is very far from its
equilibrium value z2/z3 .1, and in effect drives the reaction
rate as z2/z3 tries to return to equilibrium. The termk1z1z2 is no
longer the only important term in the rate equations. Instead of
concentrating on z′2 ) z′3 ) 0 as in the usual SSA, we
concentrate on the fact thatj14 ≈ -j23 ≈ k2Z31 ≈ k2C23, a
constant. Thus, from the analysis shown in Appendix B, we
find

so z4 increases linearly with time. However, as time progresses,
z3 decreases slowly from Z31. We definet2-p as the time at

TABLE 2: Analytical Results from the Extended Stationary State Approximation (ESSA)a

(A) General Case

time
(t or T ) t - t1) z1 z2 z3 z4 eq #

0 Z10 Z20 Z30 Z40

0 < t < t1 Z10+ z2 - Z20 Z20exp(-R10 t) Z30- z2 + Z20 Z40- z2 + Z20 B11.1a-11.4a
t1 ) (1/R10)Ln(R10/k2) Z11) Z10+ Z21-Z20 Z21) k2C23/R10 Z31) C23 - Z21

≈ C23

Z41) Z40+ Z20- Z21 B10.3;
B11.1b-11.4b

T ) t - t1 > 0 C14- z4 [C23k2(1 + k-1Z31T)]/
k1(Z11- k2Z31T)

C23 - z2 Z41+ k2Z31T
≈ Z41+ k2C23T

B14.1-14.4

T2_inf ≈ C14/(k2C23) B15.2
T3_p≈ 1 + (k-1C14/k2)/nk1C23 B15.3
T2_p) T2_inf - T3_p Z21+ nZ31 Z31(1- n)
equilibrium (k-1k-2C14)/k1k2 + k-1k-2

≈ (k-1k-2C14)/k1k2

k2C23/k2 + k-2 k-2C23/k2 + k-2 k1k2C14/k1k2 + k-1k-2

≈ C14

B17.1-17.4

(B) Numerical Example

k1 k-1 k2 k-2

20.000 0.200 10.000 1.000

time
(t or T ) t - t1) z1 z2 z3 z4 eq #

0 100.000 2.000 0.200 0.001
0 < t < t1 98.0+ 2 exp(-2000t) 2 exp(-2000t) 0.20- 2 exp(-2000t) 2.001- 2 exp(-2000t) B11.1a-11.4a
t1 ≈ 0.00260 98.011 0.011 2.189 1.990 B10.3;

B11.1b-11.4b
T ) t - t1 > 0 98.011- 21.89T 0.011{1 + 0.421T}/

1 - 0.2233T
C23 - z2 1.990+ 21.89T B14.1-14.4

T2_inf ≈ 4.55 B15.2
T3_p≈ 0.0682/n B15.3
T2_p) 4.55- 0.0682/n 0.230 1.970
equilibrium ) 0.0999011

≈ 0.1
2.00 0.20 99.9010989

≈ 99.9
B17.1-17.4

a T2_p )T2_inf - T3_p; C14 )Z10 +Z40; C23 ) Z20 +Z30; R10 ) k1 Z10; p ) % error;n ) p/100.

Figure 3. Concentration of final product z4 vs time t for reaction
scheme I and parameters of numerical example. Lower curve is
computer numerical integration. Upper curve is analytical approximation
using ESSA.

z′4 ) dz4/dt ≈ k2Z31≈ k2C23 (14) ) (B13.2)
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which z3 has changed byp% from Z31 . From then on, eq 14 is
no longer accurate top%. In our numerical example, forp )
10% this ist2_10 ≈ 3.9, for which the ESSA predicts 87% of z1

has been converted to z4 (Table 1 shows 85%).
Although the production rate z′4 decreases significantly from

then on, the integrated effect on z4 is much smaller, so that in
our example, analytical eq B14.1 predicts z4 ≈ 100% att )
4.8, whereas the more accurate numerical integration (Table 1)
finds z4 ≈ 96% at that time; an error of only 4%. Comparison
of the analytical ESSA and the computer solutions for z4 is
shown graphically in Figure 3; the fit is remarkably good.
Detailed results for all concentrations are shown in Table 2.

ESSA Interval 3 (t > t2). In this interval, all reagents
approach equilibrium. There are no very simple approximations
based on one stationary reagent or one dominant process. The
approach to equilibrium is more difficult to compute accurately
analytically. However, the final equilibrium solutions are found
easily and are shown in Table 2.

We found above that deviations of eq B14.1 from the
numerical integrations are sufficiently small to be within the
accuracy of the experiments,1 and thus are not worth much effort
to find more accurate analytical solutions. Thus, we extend the
use of eqs B14 into this time interval but cut off at zi ) Zi(equil).

8. Comparison of Theory with Experiment

We have not specified the scales (units) used for the timet
or rate constantsk. In principle, these could be determined by
fitting to experiments.

The report of Maerker et al.1 of their experiment explicitly
shows a linear conversion rate graphically (their Figure 1) for
only 250 min, while reporting in the text that the “conversion
is completed within 24 hours”. The growth of z4 in our model
remains approximately linear (z4 ≈ Z41 + k2C23T ≈ 1.990+
21.89T) until T ≈ t ≈ 4. This would mean that our timet ) 4
corresponds to the experimental 24 h, indicating that our unit
of time would be about 6 h.

On the other hand, Maerker et al.1 did not report any actual
concentrations, thus we cannot determine scales for our
concentrations and rate constants.

As suggested by an anonymous reviewer, “Experiments with
added known concentrations of these monolithium compounds
should be very interesting”. They could be used to check the
theoretical prediction that the conversion rate is proportional
to the total concentration of these two (cis+ trans) monolithium
compounds, and almost independent of their initial relative
concentrations. Maerker et al.1 did one such experiment which
showed that a large initial concentration of (E)-3, i.e., Z20 ) ≈
0.83 Z10, increased the reaction rate. There were, however,
insufficient data for a quantitative comparison with the predic-
tions of the model. Also, the large initial concentration of Z20

violates the inequalities required for the approximations in our
analytical treatment.

9. Conclusions

The enhanced stationary state approximation (ESSA) and the
network representation provide analytical solutions for the time-
dependent concentrations of each of the reagents as well as the
reaction rates in the conversion of the dilithium adduct of
diphenyl acetylene to its trans derivative (E)-5. The ESSA also
provides self-estimates on the limits of its own accuracy for
predicting conversion rates.

It is seen from the analytical ESSA solutions that the initial
trace concentration z3 [(Z)-3] increases rapidly during the first
phase of the reaction, as z2 is almost completely depleted, driven

by the large deviation from equilibrium of the diphenyl acetylene
concentration z4. The absolute value of changes to all four
reagent concentrations are nearly equal; however, the percentage
change in the z1 concentration is very small, whereas the
percentage changes in the other three reagent concentrations
are all large. It is this contrast that makes the ESSA so accurate
in this time interval. During the main phase of the reaction, the
increased z3 acts as a nearly constant reservoir to produce extra
z2 [(E)-3]] at a nearly constant rate. This extra z2 then rapidly
reacts with the cis diphenyl acetylene (source z1) to form the
trans derivative product, z4 ) (E)-5 at the same nearly constant
rate. Thus, the combination of a reservoir z3 as a steady source
for extra z2, and the rapid reaction of z1 with this extra z2, is
very effective in maintaining the nearly zero-order reaction over
the wide range of source concentrations. We found a very rapid
initial transient reaction, during which the amount of cis diphenyl
acetylene (source z1) converted to its trans derivative (product
z4) is equal to approximately Z20 (the initial trace concentration
of monolithiated stilbene).

During the main phase of the reactions, after the very short
initial transient, the conversion rate is predicted quite accurately
by the ESSA to be a constantk2C23, the product of the rate
constantk2 with the total initial concentration of stilbene C23

(the total of cis+ trans monolithium compounds).
Although the diphenyl acetylene conversion rate slows down

in a predictable manner toward the end of the reaction, the
integrated concentration of the trans diphenyl acetylene product
(z4) is predicted by the ESSA to increase almost linearly (within
the accuracy of the experiments)1 through the end of the
reaction. The analytic ESSA treatment also reproduces the
computer computations with accuracy better than the uncertain-
ties in the experiments.1

Thus, overall, we see that the reaction scheme I, originally
proposed by Kemmer,2 can indeed explain the nearly linear,
apparently zero-order kinetics found experimentally throughout
the entire reaction, with conversion rate equal tok2C23.

Comparison with existing experiments indicates that our
model should use a time scale with a unit of time of ap-
proximately 6 h. Available experimental results do not give
direct information on actual concentrations of the reagents, so
we have insufficient information to fix the scales of concentra-
tions and rate constants.
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Appendix A: Notation

General Conventions: For rates and concentrations, vari-
ables are indicated by lower case letters ri, zi, whereas constants,
such as their values at particular times, are indicated by upper
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case letters Ria, Zia respectively. The subscripti ) 1, 2, 3, 4
indicates the particular reagent. The subscripta ) 0, 1, 2_p, ...
indicates the timeta (or Ta) at which this variable is evaluated.

Concentrations C14 and C23 are upper case because they are
constant throughout the reaction.

In the equations, zi (i ) 1, 2, 3, 4), In, R, M, & P are used
to represent the concentrations of the various reagents. In the
text, zi represents either the names of the four reagents or their
respective concentrations, as will be clear from the context. This
avoids the need for brackets, e.g. [zi] etc., to denote concentra-
tions, which would make some of the longer equations rather
awkward.

Time derivatives of zi are indicated by primed variables: zi′
as well as dzi/dt. Also, j14 andj23 are used for combinations of
time derivatives of concentrations, which appear as voltage
controlled current sources in the network representation.

t represents the time from the beginning of the reaction,
whereasT represents the time from some intermediate stage of
the reaction.

For reaction scheme II, upper case letters are used throughout
for variable concentrations; this allows descriptive abbreviations
without confusion with similar lower-case letters for reaction
scheme I.

Specific Notation: The following notation is used throughout
this paper.

Abbreviations:

SSA stationary state approximation

ESSA extended stationary state approximation

Rate Constants:
ki i ) 1, -1, 2, -2

Concentrations/Reagents:

In initiator

M monomer

P polymer

R radical

z1 (Z)-2 cis dilithium adduct of diphenyl-acetylene, tolane. This
has absorption peak at 253 nm [Maerker et al.1]

z2 (E)-3 (trace) trans mono-lithiated adduct of tolane; mono-
lithiated trans stilbene [Maerker et al.1], CA registry No.
213315-71-0

z3 (Z)-3 (unstable) cis monolithiated adduct of tolane; cis stilbene
[Maerker et al.1, Levin et al.3]

z4 (E)-5 trans ortho-lithiated. This has absorption peak at 278
nm; [Maerker et al.1], CA registry number (RN 213315-
73-2) chemical name: (2-2-(Lithiophenyl)-1-phenylvinyl)
lithium, or Lithium [.mu.[1,2-phenylene[(1E)-2-phenyl-1,2-
etthenediyl]]]di- (9CI)

zi i ) 1, 2, 3, 4 reagent, or its concentration (variable), depending
on context

Zia i ) 1, 2, 3, 4;a ) 0, 1, 2_p. Value of concentration zi at
time ta

C14 ) Z10 + Z40 ) z1 + z4

C23 ) Z20 + Z30 ) z2 + z3

Rates:

r1 ) k1z1

r3 ) k2z3

R10 ) k1Z10

R31 ) k2Z31

Time Derivatives of Concentrations:

zi′ ) dzi/dt i ) 1, 2, 3, 4

j14 ) k1 z1 z2 - k-1 z3 z4 ) z4′ ) -z1′ see also Network
below

j23 ) k-2 z2 - k2 z3 ) z1′ - z2′ ) z3′ ) z4′ see also Network
below

Network:

Ci (i ) 1, 2, 3, 4) capacitor corresponding to reagent z1.
(The Ci are all chosen to be 1 Farad).

Qi (i ) 1, 2, 3, 4) ) charge on Ci, corresponding to
concentration of zi.

Vi ) Qi/Ci ) voltage across Ci, corresponding to concentra-
tion of zi.

Ii ) dQi/dt ) current into Ci, corresponding to dzz/dt.
j14 ) k1Q1Q2 - k-1Q3Q4 This is a voltage controlled current

source (VCCS). See also Time Derivatives of Concentrations
above.

j23 ) k-2Q2 - k2Q3 This is a volatage controlled source
(VCCS). See also Time Derivatives of Concentrations above.

Changes from Steady State:

n ) [(z3 - Z31)/Z31] ) relative change of z3 from Z31

p ) 100n ) % change of z3 from Z31

Times ta, Ta:

t0 ) 0 (a ) 0) is starting time of reactions
t1 (a ) 1) is first time at which dz2/dt ) -dz3/dt ) 0
t2_p (a ) 2_p) is time at which z3 changes by p% from Z31

T ) t - t1 is time interval aftert1
T2_p ) t2_p - t1 (a ) 2_p) is time interval fromt1 to t2_p

T2_inf (a ) 2_inf) is the value ofT when the denominator of
eq A14.3c becomes zero so the fraction becomes “infinite”

T3_p (a ) 3_p) ) T2_inf - T2_p

Appendix B

Independent constants:

Independent rates:

Rate equations for the reactions.

Choice of rate constants in general:

Note that units ofk1, k-1 differ from units ofk2, k-2, so they
cannot be directly compared.

C14) z1 + z4 ) Z10+ Z40) 100.001 (B1.1)

C23 ) z2 + z3 ) Z20+ Z30) 2.2 (B1.2)

j14) k1z1z2 -k-1z3z4 ) z′4 ) -z′1 (B2.1)

j23 ) k-2z2 -k2z3 ) z′1 -z′2 ) z′3 -z′4 (B2.2)

-z′1 ) z′4 ) j14 (B3.1)

-z′2 ) z′3 ) j14+ j23 (B3.2)

k1 . k-1 (B4.1)

k2 . k-2 (B4.2)
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Choice of rate constants for numerical example:

Choice of initial concentrations in general:

Choice of initial concentrations for numerical example:

so the two independent constants are:

First Time Interval (0 e t e t1). At t ) 0, and for a short
time thereafter, the first term ofj14 dominates the reaction rates.
Also, the largest concentration, z1, changes by only a very small
percentage, so this “stationary state” regime can be characterized
by nearly stationary z1 so

and nearly stationary (z1 - z2) so

Thus, all of the rates of change of concentrations are nearly
equal:

Note that although the absolute values of all the time derivatives
are nearly equal, because Z10 is the largest initial concentration,
the percentage changes in z1 are the smallest. Thus, z1 ≈ Z10

can remain nearly stationary when there are large percentage
changes in some other concentrations.

Of the differential equations B9.1, only the one for z′2 is
uncoupled. It is easy to integrate.

However, z2 decreases while z3 and z4 both increase to the point
that k1z1z2 no longer dominates, and eventually, att ) t1, z′2
decreases to zero. This time,t1, is the end of the first time
interval.

From eq B3.2 we find at that instantt1

Solving for Z21 ) z2(t ) t1) and using Z11 ≈ Z10, k2 .k-1 z4,
andk1 z1 . k2 . k-2, we get in general,

and for our numerical example

Comparing with eq B9.2 att ) t1, we can solve fort1

Note thatt1 is very short compared to the overall reaction time
and can often be neglected in the main phase of the reaction.

From eq B9.1, we see that the absolute values of all the
concentration changes are nearly equal, so we can find all of
the concentrations att ) t1.

In eqs B11, the algebraic terms are more general than the
particular numerical values for our particular numerical example.
Note that there is only a very short time just beforet1 when the
approximationj23 , j14 of eq B8.4 is not valid. Thus we get
only very small integrated errors int1 and the values of z att
) t1 by using this approximation untilt ) t1.

Second Time Interval (t1 e t e t2_N). By our definition of
t ) t1, (see B10.1), at this timej23 + j14 ) 0. For much of the
succeeding time, z3 is nearly stationary, so

Note that since Z21 , Z31 and |z′2| ) |z′3|, the percentage
changes in z2 are much larger than the percentage changes in
z3. Thus, z3 can be nearly stationary, even at times when there
are large percentage changes in z2.

From eqs B3.1 and B12.2, we get rate equations

Using conditions B4.2 and B12.1 and the fact that Z31 . Z21,
this simplifies to (including numbers for our numerical example)

Looking back at the original reaction scheme, we see that
the termk2z3 is the rate of conversion of z3 back to z2. Thus, it
is clear that in this time interval, the major effect is the
production of small extra amounts of z2 at a nearly constant
rate from the large “reservoir” of z3, followed by the quick
reaction of the extra z2 with z1 to form z4 at the same nearly
constant rate.

k1 ) 20; k-2 ) 1.0 (B5.1)

k-1 ) 0.2; k2 ) 10.0 (B5.2)

Z10. Z20. Z30. Z40 (B5.3)

Z10) 100; Z20) 2.0; Z30) 0.20; Z40) 0.001
(B6.1)

C14) z1 + z4 ) 100.001 (B7.1)

C23 ) z2 + z3 ) 2.2 (B7.2)

z1 ≈ Z10 (B8.1)

j14≈ k1z1z2 ) r1z2 ≈ k1Z10z2 ) R10z2 (B8.2)

j23 ≈ 0 (more precisely j23 , j14) (B8.3)

z′1 ) -z′4 ≈ z′2 ) -z′3 ≈ -j14≈ -R10z2 (B9.1)

z2 ) Z20exp(-R10t) (B9.2)

j14+ j23 ) 0 (B10.1)

Z21≈ k2C23/R10 (B10.2a)

Z21≈ 0.011 (B10.2b)

t1 ≈ (1/R10) Ln(Z20/Z21) ≈ (1/R10) Ln([R10Z20]/[k2C23])
≈ 0.00260 (B10.3)

≈ (1/R10) Ln(R10/k2) since Z20. Z30

z1 ≈ Z10+ z2 - Z20≈ 98.0+ 2 exp(-2000 t) (B11.1a)

z2 ≈ Z20exp(-R10t) ≈ 2 exp(-2000t) (B11.2a)

z3 ≈ Z30- z2 + Z20≈ 0.200-2 exp(-2000t) (B11.3a)

z4 ≈ Z40- z2 + Z20 ≈ 2.001-2 exp(-2000t) (B11.4a)

Z11≈ Z10+ Z21- Z20≈ 98.011 (B11.1b)

Z21≈ k2C23/R10≈ 0.011 (B11.2b)

Z31≈ C23 - Z21≈ 2.189

≈ C23) 2.20 (B11.3b)

Z41≈ Z40+ Z20- Z21≈ 1.990 (B11.4b)

z3 ≈ Z31 (B12.1)

z′3 ) j23 + j14≈ 0

(or more precisely|j23 + j14| , |j23| ≈ |j14|) (B12.2)

z′4 ) - z′1 ≈ -j23 (B13.1)

z′4 ) - z′1≈ k2Z31) R31≈ 21.89

≈ k2C23 [1 - (k2/R10)] ≈ k2C23 ) 22 (B13.2)
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Equation B13.2 is easily integrated to solve for z4 and z1.

Equations B14.1 and B14.2 predict 100% conversion of z1 to
z4 in time t ) t1 + [(C14 - Z41)/R31] ≈ 4.480. The computer
solutions show a 96% conversion in that time, so the integrated
error of our approximation for z4 is only 4%.

Now, knowing the time dependence of z4 and z1, we find the
time dependence of z2 and z3 from eqs B12.2, B14.1,2, and
B7.2.

It is clear that eqs B14.1-4 become invalid for largeT due to
the breakdown in the assumption that z3 ≈ z31. Equation B14.3
is valid only as long as the change in z2 () negative of change
in z3) is a small percentage of Z31. If, for example, we allow a
relative variation ofp% ) p/100 ) n in Z31, then

for n ) p/100 ) p% change in z3.
So, comparing eqs 14.3a and 14.3b, we find atT ) T2_p

We defineT2_inf as the value ofT when the denominator of eq
B14.3c goes to zero andT3_p ) T2_inf - T2_p. We solve B14.3c
for bothT2_inf andT3_p, for n . k-1/k1 () 0.01 in our example):

Thus, for 10%, and 20% changes in conversion rate, in our
numerical example, we findT and the corresponding values of
z4 ) Z42 _p to beT2_10 ≈ 3.9, Z42 _10 ≈ 87; T2_20 ≈ 4.2,
Z42 _20 ≈ 94. Within 10% (20%) accuracy, the conversion rate
of z1 to z4 remains 21.9 from 2% through 87% (94%)
conversion.

Third Time Interval ( t2_p < t). This interval is characterized
by a final approach to equilibrium. Aftert2, the conversion rate
noticeably slows down (nonlinear problem) and becomes more
difficult to compute analytically with reasonably accurate
approximations. The approximate concentration of z4, deter-
mined by the integration of the approximate conversion rate,
differs by much less from the computed solution than does the
conversion rate itself, a difference within the experimental
accuracy. (See discussion of eqs B14.)

The final equilibrium concentrations are straightforward to
compute analytically by setting all of the time derivatives to
zero in the rate equations. We find

Thus, in this time interval, to get concentrations that are accurate
within the experimental uncertainty, we simply extend the linear
solution of the second time interval beyondt2, using eqs B14.1-
4, but cutting off the values of zi at Zi(equil) of equations B17.1-4.
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z4≈ Z41+ R31(t - t1) ) Z41+ R31T ≈ 1.990+ 21.89T

) (Z41- R31t1) + R31t ≈ 1.933+ 21.89t (B14.1)

z1 ) C14- z4 ≈ 98.011- 21.89T ≈ 98.068- 21.89t
(B14.2)

z2≈ [k-1C23z4 - k2C23]/[k1C14+ k2 + k-2 - k1z4]

≈ {C23[(k2 + k-1Z41) + k-1R31T]}/{k1(Z11- R31T)}

≈ {C23[k2 + k-1R31T}/{k1(Z11- R31T)}

≈ 0.011{1 + 0.421T}/{1-0.2233T} (B14.3a)

z3 ) C23 - z2 (B14.4)

z2 ) Z21+ nZ31) (1 - n)Z21+ nC23 ≈ nC23 (B14.3b)

n ) k2[1 + k-1C23T2_p]/k1[Z11- k2C23T2_p] (B14.3c)

T2_p) T2_inf - T3_p (B15.1)

T2_inf ) Z11/(k2C23) ) (C14- C23)/(k2C23)

≈ (C14)/(k2C23) ≈ 4.55 (B15.2)

T3_p≈ [k-1/n k1C23]{(1/k-1) + [(C14- C23)/k2]}

≈ [k-1/n k1C23]{(1/k-1) + (C14/k2)} ≈ 0.0682/n
(B15.3)

Z1(equil)) [k-1k-2/(k1k2 + k-1k-2)]C14) 0.0999011≈ 0.1
(B17.1)

Z2(equil)) [k2/(k2 + k-2)]C23 ) 2.00 (B17.2)

Z3(equil)) [k-2/(k2 + k-2)]C23 ) 0.20 (B17.3)

Z4(equil) ) [k1k2/(k1k2 + k-1k-2)]C14) 99.9010989≈ 99.9
(B17.4)
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